Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 412(29): 8155-8166, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32979075

RESUMO

In this work, an innovative non-destructive monitoring methodology based on the analysis over time of open-air rock art sites is presented. This approach is based on the combination of in situ spectroscopic and chemometric studies to diagnose and monitor the state of conservation of rock art sites. Data acquired over a period of time by non-invasive analytical techniques such as portable Raman spectrometry (RS) and handheld energy-dispersive X-ray fluorescence (HH-EDXRF) spectrometry are compared to detect physicochemical changes that could affect the rock painting integrity. To demonstrate the applicability of the proposed procedure, three analysis campaigns (between 2013 and 2016) were carried out, analyzing Levantine rock pictographs preserved in the rock shelter of Solana de las Covachas VI (Albacete, Spain; see Electronic Supplementary Material (ESM) Fig. S1). The analyzed areas showed different types of active weathering processes such as gypsum and calcium oxalate formation, giving rise to conservation issues such as painting fading, surface loss, microbial colonizations, and formation of crusts. Results evidence that the proposed methodology can be very useful to monitor chemical changes in the surface of the walls where the rock art is located, thus obtaining crucial information for its preservation and management.

2.
Sci Total Environ ; 692: 23-31, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31336297

RESUMO

Machu Picchu citadel is the main archaeological Inca sanctuary widely known around the world, and a World Heritage Site of high cultural and natural value. For its construction a whitish granitic rock, extracted from the "Vilcapampa or Vilcabamba" batholith formation was used. During time, some of the granitic rocks from the natural stonewalls of the Meditation area of the Archaeological Park were restored. For the restoration works done in the 50s' a specific lime mortar called Clarobesa was used. After the inclusion of this joining mortar, many efflorescences are nowadays visible in the mortar itself and on the surface of the edges of the annexed rocks. To evaluate the possible impact of these salts crystallizations in the conservation state of these natural stonewalls, a multi-analytical methodology was designed and applied. With a combination of non-invasive and destructive techniques such as X-ray Diffraction, Raman microscopy, Scanning Electron Microscope coupled to an Energy Dispersive X-ray Spectrometer and ion chromatography, the mineralogical composition and the nature/concentration of the soluble salts present in the Clarobesa mortar was determined. The experimental results suggest that Clarobesa mortar is a hydraulic lime mortar. The study of salts crystallizations by Raman microscopy allowed identifying the presence of calcium sulfates with different hydration waters and also nitrates. In some samples, the concentration of sulfates was high, reaching values up to 10% w/w. Although the concentration of nitrates is not extremely high, a clear contribution of ammonium nitrates coming from the decomposition of the nearby vegetation was assessed. Since the Clarobesa mortar can be considered an important input of ions that can migrate to the joined granitic rocks, in the future, it will be recommendable to monitor possible changes in the conservation state of the joined rocks.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 223: 117360, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31319272

RESUMO

We present the compositional analysis of three terrestrial analogues of Martian olivine-bearing rocks derived from both laboratory and flight-derived analytical instruments. In the first step, state-of-the-art spectroscopic (XRF, NIR and Raman) and diffractometric (XRD) laboratory systems were complementary used. Besides providing a detailed mineralogical and geochemical characterization of the samples, results comparison shed light on the advantages ensured by the combined use of Raman and NIR techniques, being these the spectroscopic instruments that will soon deploy (2021) on Mars as part of the ExoMars/ESA rover payload. In order to extrapolate valuable indicators of the mineralogical data that could derive from the ExoMars/Raman Laser Spectrometer (RLS), laboratory results were then compared with the molecular data gathered through the RLS ExoMars Simulator. Beside correctly identifying all major phases (feldspar, pyroxene and olivine), the RLS ExoMars Simulator confirmed the presence of additional minor compounds (i.e. hematite and apatite) that were not detected by complementary techniques. Furthermore, concerning the in-depth study of olivine grains, the RLS ExoMars simulator was able to effectively detect the shifting of the characteristic double peak around 820 and 850 cm-1, from which the FeMg content of the analyzed crystals can be extrapolated. Considering that olivine is one of the main mineral phases of the ExoMars landing site (Oxia Planum), this study suggests that the ExoMars/RLS system has the potential to provide detailed information about the elemental composition of olivine on Mars.

4.
Environ Sci Pollut Res Int ; 25(7): 6285-6299, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29247413

RESUMO

Red and yellow bricks are the wall-building materials generally used in Roman masonries. The reasons for the different coloration are not always understood, causing loss of crucial information both for the conservation and for the archaeological knowledge of the cultural sites. In this work, a combination of in situ analyses, employing portable Raman spectroscopy and handheld energy dispersive X-ray fluorescence (HH-ED-XRF) spectroscopy along with chemometric analysis, was carried out on ancient Roman bricks of the "Casa di Diana" building (Ostia Antica, Italy-130 CE). Specifically, the compounds and the characteristic elements, which describe each type of brick (red and yellow), were studied avoiding destructive or invasive sampling. The molecular analysis allowed us to identify the major and minor compounds that characterise the bricks (anatase, hematite, quartz, calcite and silicates). However, the elemental analysis gave more useful information. Thus, the complex HH-ED-XRF data matrix generated was treated by a specific principal component analysis (PCA) to identify behavioural differences of the coloured bricks. The results revealed that Ca and Fe are the discriminatory elements for the two types of bricks. The PCA outcomes suggest that the contribution of certain elements is different in the bricks (mainly Ca, P, Sr, As and S, for yellow bricks), which could indicate different raw materials. Even among bricks with the same red colour (Al, Si, Ti, K, Fe, Cr, Mn, Ni, Zn, Cu, Rb and Zr, seemed to be the elements linked to raw materials), as a function of the surface impacts (orientation and microclimate affect the salts' formation), a distinction was made. Furthermore, the PCA pointed out that the yellow bricks are those more affected by decaying processes (related with Ca, P and S), complying with the Raman spectroscopy results in which the efflorescences (gypsum) affect especially the surface of these types of bricks.


Assuntos
Arqueologia/métodos , Materiais de Construção/análise , Microclima , Minerais , Arqueologia/instrumentação , Técnicas de Química Analítica , Conservação dos Recursos Naturais , Materiais de Construção/história , História Antiga , Itália , Minerais/análise , Minerais/química , Análise de Componente Principal , Espectrometria por Raios X , Análise Espectral Raman
5.
Sci Total Environ ; 581-582: 49-65, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28086132

RESUMO

This work outlines a temperate latitude beachrock occurrence, which represents the legacy of heavy anthropogenic environmental disturbance. The units contain high amounts of slag and iron-rich wastes derived from metallurgical activities that attest the impact of the past industrial development on such coastal systems. The exposition of the anthropogenic wastes to weathering processes, such as the influence of marine aerosols and the chemical attack of acid gases like the SOx coming from the nearby urban-industrial atmosphere, gave rise to the formation of early diagenetic ferruginous cements. A new analytical methodology based on the combination of micro-Raman spectroscopy (MRS), Raman chemical imaging, SEM-EDS and the Structural and Chemical Analyzer (SCA, an emerging system that hyphenates micro-Raman and SEM-EDS), was applied for the first time to characterize the ferruginous cements. The MRS analyses revealed Fe2+/Fe3+ oxides and oxyhydroxides, CaCO3 polymorphs and less frequently silicates. The Fe mineral species detected were hydrated goethite, hematite, magnetite, magnesioferrite, lepidocrocite and goethite. Complementary Raman imaging, SEM-EDS and SCA analyses unraveled the preferential distribution of hydrated goethite. The identified iron mineral phases are weathering sub-products of hematite commonly derived from atmospheric/aqueous leaching processes triggered by the chemical attack of the acid gases. EDS showed the existence of other elements such as Si, Mg, Cl, Na, Al, K and sporadically S that indicated the importance of permeability, atmospheric deposition and the acid attack. Additionally, calcite and gypsum minerals also evidenced the action of meteoric waters, dry deposition processes or the attack of SOx acid gases. The presence of such compounds is modifying the cement stratigraphy and suggests that the dissolution of carbonates is currently taking place. Those facts influence the erosive susceptibility and the release of the anthropogenic materials trapped originally in the beachrocks, which could act as potential secondary sources of contaminants to the coastal environment.

6.
Appl Spectrosc ; 70(1): 137-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26767639

RESUMO

This work presents a methodology that combines spectroscopic speciation, performed through portable Raman spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and energy dispersive X-ray fluorescence spectrometry (ED-XRF) working in situ, and thermodynamic speciation to diagnose the environmental impacts, induced by past and current events, on two wall painting panels (Nos. 9103 and 9255) extracted more than 150 years ago from the walls of a Pompeian house (Marcus Lucretius House, Regio IX, Insula 3, House 5/24) and deposited in the Naples National Archaeological Museum (MANN). The results show a severe chemical attack of the acid gases that can be explained only by the action of H2S during and just after the eruption of the Vesuvius volcano, that expelled a high concentration of sulfur gases. This fact can be considered as the most important process impacting the wall painting panels deposited in the museum, while the rain-wash processes and the colonization of microorganisms have not been observed in contrast to the impacts shown by the wall paintings left outside in the archaeological site of Pompeii. Moreover, the systematic presence of lead traces and strontium in both wall paintings suggests their presence as impurities of the calcite mortars (intonacco) or calcite binder of these particular fresco Pompeian murals.


Assuntos
Arqueologia/métodos , Pintura/análise , Pintura/história , Pinturas/história , Análise Espectral/métodos , História Antiga , Itália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA